Convergence Properties of Iterative Methods for Symmetric Positive Semidefinite Linear Complementarity Problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On convergence of iterative projection methods for symmetric eigenvalue problems

We prove global convergence of particular iterative projection methods using the so-called shift-and-invert technique for solving symmetric generalized eigenvalue problems. In particular, we aim to provide a variant of the convergence theorem obtained by Crouzeix, Philippe, and Sadkane for the generalized Davidson method. Our result covers the Jacobi-Davidson and the rational Krylov methods wit...

متن کامل

Iterative Regularized Solution of Symmetric and Positive Semi-Definite Linear Complementarity Problems

In this report an iterative method from the theory of maximal monotone operators is transfered into the context of linear complementarity problems and numerical tests are performed on contact problems from the field of rigid multibody dynamics.

متن کامل

Schwarz Iterations for Symmetric Positive Semidefinite Problems

Convergence properties of additive and multiplicative Schwarz iterations for solving linear systems of equations with a symmetric positive semidefinite matrix are analyzed. The analysis presented applies to matrices whose principal submatrices are nonsingular, i.e., positive definite. These matrices appear in discretizations of some elliptic partial differential equations, e.g., those with Neum...

متن کامل

A Family of Polynomial Affine Scaling Algorithms for Positive SemiDefinite Linear Complementarity Problems

No part of this report may be reproduced in any form, by print, photoprint, microolm or any other means without written permis

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Operations Research

سال: 1993

ISSN: 0364-765X,1526-5471

DOI: 10.1287/moor.18.2.317